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Abstract

Motivation: Standard algorithms for pairwise protein sequence
alignment make the simplifying assumption that amino acid sub-
stitutions at neighboring sites are uncorrelated. This assumption
allows implementation of fast algorithms for pairwise sequence
alignment, but it ignores information that could conceivably in-
crease the power of remote homolog detection. We examine the
validity of this assumption by constructing extended substitu-
tion matrixes that encapsulate the observed correlations between
neighboring sites, by developing an efficient and rigorous algo-
rithm for pairwise protein sequence alignment that incorporates
these local substitution correlations, and by assessing the ability
of this algorithm to detect remote homologies.
Results: Our analysis demonstrates that local correlations be-
tween substitutions are not strong on the average. Consequen-
tially, incorporating local substitution correlations into pairwise
alignment does not lead to a statistically significant improvement
in remote homology detection. Therefore, the standard assump-
tion (that individual residues within protein sequences evolve in-
dependent of neighboring positions) is an efficient and appropri-
ate approximation.
Availability: Sequence data, software, and matrixes are freely
available fromhttp://compbio.berkeley.edu/ .

1 INTRODUCTION

Among the most commonly used tools in computational biology
are the pairwise protein sequence alignment methods, such as
SSEARCH, FASTA and BLAST (Needleman & Wunsch, 1970;
Smith & Waterman, 1981; Pearson & Lipman, 1988; Altschul
et al., 1990; Durbinet al., 1998). These algorithms are elegant,
efficient and effective methods of detecting similarity between
closely related protein sequences. However, the ability of fast
pairwise methods to detect homology deteriorates as the diver-
gence between the sequences increases. Past the “twilight zone”
(20-30% pairwise sequence identity), only a small fraction of re-
lated proteins can be found. (Sander & Schneider, 1991; Doolit-
tle, 1992; Brenneret al., 1998; Green & Brenner, 2002). There-
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fore, in order to make better use of the vast and increasing amount
of available biological sequence data, there is an immediate need
for more sensitive, fast database search methods.

For the sake of computational efficacy, current pairwise align-
ment methods make several simplifying assumptions. First,
amino acid substitution are assumed to be homogeneous between
protein families. The most commonly used substitution matri-
ces (BLOSUM (Henikoff & Henikoff, 1992) and PAM (Dayhoff
et al., 1978)) are thus generic models of protein sequence evo-
lution across all protein sequence families at various evolution-
ary distances. Second, substitutions at a given site are assumed
to be uncorrelated with those on neighboring sites. That is, the
likelihood of substituting an amino acid,X, for amino acidY is
assumed to be independent of the sequence context ofX. It is
known that both of these simplifying assumptions introduce er-
rors into homology searching. Relaxing the assumption of homo-
geneous substitution across protein families can significantly im-
prove the performance of pairwise alignment methods (Yuet al.,
2003). Furthermore, alignment methods that remove the assump-
tion of homogeneity among different positions in the sequence,
and instead model the heterogeneity of the given protein family,
have been found to be dramatically superior for remote homol-
ogy detection (Parket al., 1998, R. E. Green and S. E. Brenner,
Unpublished data). Unfortunately, these profile methods (PSI-
BLAST (Altschul et al., 1997), HMMER (Eddy, 2001), SAM
(Karplus et al., 1998) etc. ) are not tractable for all query se-
quences. They require the presence, identification, and correct
alignment of homologous sequences in order to generate a model
of the query sequence’s family. Therefore, the fast, easy to use,
and universally applicable pairwise methods remain widely used
for database searching, despite their lower sensitivity.

One proposed strategy for increasing the sensitivity of pair-
wise alignment is to use a more sophisticated scoring function
for amino acid substitutions, namely one that is sensitive to the
sequence context in which the residue reside. For example, amino
acid sequences are correlated with secondary structural features,
such as helixes and loops, which can directly lead to structure
(and therefore sequence) dependent substitution patterns (Thorne
et al., 1996; Tophamet al., 1997; Goldmanet al., 1998). Sim-
ilarly, one might intuitively expect structurally and functionally
important residues, such as cysteines and prolines to be more or
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less conserved depending on their local sequence environment
and the prevalence of particular motifs. Indeed, such trends have
been reported (Gonnetet al., 1994).

By relaxing the assumption that each position in a protein se-
quence evolves independently, context-specific variations in pro-
tein sequence evolution may possible be encapsulated in a model
of protein sequence evolution that is slightly richer than the
context-independent substitution model that underlies the Smith-
Waterman style algorithms. The first large-scale exploration of
the effect of sequence context on amino acid evolution was per-
formed by Gonnet and co-workers (Gonnetet al., 1994). In this
study, the assumption of site-independent substitution was tested
by examining the frequencies of dipeptide substitutions, and com-
paring them to the dipeptide substitution frequencies expected as-
suming no sequence dependent correlations. Despite the fact that
nearly half of the elements of the400 × 400 observed dipeptide
matrix were vacant (due to the sparsity of data) several interesting
patterns were evident. The chief trend was that amino acids are
generally more likely to be conserved if they are adjacent to posi-
tions that are also conserved. The authors reasoned that this result
is expected because whatever constraint is causing the residue at
position i to be conserved is also likely to apply to the residue at
positioni + 1 or i − 1. Furthermore, if the residue at position i
is not conserved and therefore not evolutionarily constrained, its
neighbors are also not likely to be constrained.

More recently Jung & Lee (2000) have taken advantage of the
large increase in available data to reexamine trends in dipeptide
evolution. They used the observed patterns of substitution within
a large set of structure-based alignments to generate dipeptide
substitution matrices. Furthermore, they developed an extension
to the standard Smith-Waterman alignment algorithm that incor-
porates a term from these dipeptide matrices. By using sequence
and structure context information, they show some improvement
in homolog detection in a limited test set. However, their method
could not be extensively tested, or practically utilized, because an
efficient dynamic programming method for finding the optimal
alignment was not known to the authors. Instead, they adopted a
heuristic search that is not guaranteed to find optimal alignments.

In this study, we have extended the work described above by
examining the strength of local, dipeptide substitution correla-
tions using the massive amount of alignment data within the
BLOCKS database. We have also extended the standard Smith-
Waterman algorithm to include local dipeptide correlation in-
formation over a user-defined distance. Like Smith-Waterman,
this new polynomial time algorithm,doublet , finds the op-
timal alignment under the scoring scheme described. Using a
standard remote homolog detection evaluation strategy, we have
testeddoublet against the Smith-Waterman algorithm to mea-
sure the impact of including this extra information. Perhaps sur-
prisingly, we found that incorporating doublet substitution corre-
lations leads to a statistically insignificant difference in homology
detection.

2 Methods

2.1 Quantifying substitution correlations

Consider two aligned, ungapped sequences,x = x1, x2, · · · , xn

andy = y1, y2, · · · , yn, both of lengthn, where each element of
the sequence represents one of the 20 canonical amino acid, and
corresponding positions are considered aligned and homologous.
We wish to use the patterns of conservation and variation between
these sequences to estimate the probabilityP (hom|x, y) that the
sequences are homologous – i.e., that both sequences have de-
scended from a common ancestor. By Bayes’ theorem, we can
reexpress this probability as

P (hom|x, y) = P (hom)
q(x; y)

p(x)p(y)
(1)

Here,p(x) is the background probability of the given amino acid
segment andq(x; y) is the target probability of observing the
pair of segments in diverged homologous sequences (Altschul,
1991). By taking logarithms and dropping the additive constant
log P (hom) we generate an additive score,S, a measure of se-
quence similarity due to homology,

S = log
q(x1, x2, · · · , xn; y1, y2, · · · , yn)

p(x1, x2, · · · , xn)p(y1, y2, · · · , yn)
. (2)

Except for very short segments, the background and target
probability distributions are large and cannot be directly mea-
sured. Therefore, Eq. 2 is typically simplified by assuming that
substitutions probabilities are homogeneous (independent of the
location in the fragment) and that both the substitutions and the
sequence themselves are uncorrelated from one position to the
next. Consequentially, the total similarity score is now a sum
of independent parts, each representing the log odds of a single
inter-sequence residue replacement.

S ≈
∑

k

s(xk; yk), s(i; j) = log
q(i; j)

p(i)p(j)
(3)

The log odds of residue replacement,s(i, j), is a standard singlet
substitution matrix, of the type widely used in pairwise sequence
alignment (Altschul, 1991).

This approximation of the full similarity by a sum of singlet
substitution scores requires that we neglect all inter-site correla-
tions. We can perform a more controlled approximation by not-
ing that a homogeneous multivariate probability can be expanded
into a product of single component distributions, pairwise corre-
lations, triplets correlations, and so on.

P (z1, z2, · · · , zn) =
∏

i

P (zi)×
∏
i<j

P (zi, zj)
P (zi)P (zj)

×
∏

i<j<k

P (zi, zj , zk)P (zi)P (zk)P (zj)
P (zi, zj)P (zi, zk)P (zj , zk)

. . . (4)

If we assume that substitution probabilities are independent of the
location within the fragment, then we can apply this expansion to
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the segment homology score (Eq. 2).

S =
n∑

k=1

s(xk; yk) +
L∑

l=1

n−L∑
k=1

dl(xk, xk+l; yk, yk+l) + . . . (5)

The first term of this expansion represents single residue replace-
ments, as in Eq. 3. The next term defines the doublet substitution
scores,

dl(i, i′; j, j′) = log
ql(i, i′; j, j′)

pl(i, i′)pl(j, j′)
− s(i; j)− s(i′; j′) (6)

Here, i and i′ are residues separated by a distancel along one
amino acid chain, whilej andj′ are the corresponding aligned
residues on the putative homologous sequence;ql(i, i′; j, j′)
is the target probability of observing this aligned quartet, and
pl(i, i′) is the background probability of this residue pair in pro-
tein sequences. These doublet scores represent the additional
similarity due to correlations between substitutions.

By truncating the expansion of the full similarity score at dou-
blet terms (Eq. 5), we are assuming that triplet and higher or-
der correlations between substitutions are relatively uninforma-
tive. For reasons discussed below, this is probably a reasonable
approximation. Furthermore, the most important inter-site cor-
relations are between residues neighboring on the chain (Fig. 3).
Therefore, we can restrict the maximum distance over which dou-
blet interactions are scored without serious error.

The average similarity score is the inter-homolog mutual in-
formation I (Cover & Thomas, 1991), a measure of the inter-
sequence correlations. A high mutual information value indicates
strong correlation, whereas a mutual information value of zero
indicates uncorrelated variables. Mutual information has various
advantages as a correlation measure: it is firmly grounded in in-
formation theory, it is additive for independent contributions and
it has consistent, intuitive units (bits).

I(x; y) =
∑

q(x, y) log2

q(x, y)
p(x)p(y)

(7)

The average singlet score is the inter-homolog mutual informa-
tion per residue, under the assumption that replacements are un-
correlated. This is frequently reported as the ”relative entropy”
of the substitution matrix. The average doublet score is the first
order correction to the inter-sequence mutual-information due
to inter-site correlations. Consequentially, we may evaluate the
comparative importance of singlet and doublet contributions to
the sequence similarity by examining the average contributions
of these different components to the full inter-homolog mutual
information.

The preceding analysis applies to contiguously aligned se-
quence segments. However, in addition to substitutions, protein
sequences are modified by the insertion and deletion of residues.
Since it is not obvious how to capture the existence of indels in
doublet scores, in the following discussion we assume that dipep-
tide correlations do not extend across gaps, and we adopt the sim-
ple and standard affine model of gap lengths.
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Figure 1: A comparison of Smith-Waterman anddoublet se-
quence alignment. (a) A Smith-Waterman match table, with the
optimal alignment highlighted. In value of each cell is the max-
imum of 1. the singlet match score (this is the start of an align-
ment ), 2. the singlet score plus the match score from the previous
cell along the diagonal (this extends an aligned region), or 3. the
singlet score plus the optimal score from a gap score table (the
previous residue was not aligned) (b) Fordoublet , multiple
match tables are used (Eqs. 10-13). The number of match tables
is the distance over which dipeptide correlation information is
considered (in this example, 2) plus 1. Again, the optimal align-
ment is highlighted. The top table corresponds to the starts of
aligned regions. The middle table corresponds to aligned regions
of at least 2 consecutive residues. The bottom table corresponds
aligned regions of at least 3 consecutive residues. The alignment
path through these tables falls through to lower tables in regions
of conecutive aligned residues and begins again in the top table
following gaps. To extend dipeptide context scoring over longer
distances requires additional match tables.
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2.2 Alignment Algorithm

We have extended the standard Smith-Waterman optimal local
sequence alignment algorithm (Smith & Waterman, 1981) to in-
corporate doublet substitution scores (See Fig. 1). The time com-
plexity of Smith-Waterman isO(nm), wheren andm are the
lengths of the two sequences. Adding doublet scores increases
the complexity toO(nmL), whereL is the distance over which
substitution correlations are scored. This efficient dynamic pro-
gramming alignment is possible because, although we are scoring
correlations between residues that are not directly aligned, these
correlations are local along the chain. The space complexity of
our implementation is alsoO(nmL); this could be improved us-
ing standard techniques (Durbinet al., 1998).

The additional similarity score associated with adding the final
match pairxi, yj to the alignment contains singlet substitution,

S(i, j) = s(xi, yj), (8)

and doublet substitution scores,

D(i, j, r) =
r∑

l=1

dl(xi−l, xi; yj−l, yj), (9)

Here, r is the length of the preceding contiguous segment of
aligned residues, or the maximum sequence separation over
which doublet correlations are scored, whichever is less. Dele-
tions of lengthk are weighted with the affine penalty−(gopen +
(k − 1)gext), wheregopen andgext are positive constants. This
standard affine gap length model is both computationally effi-
cient, and surprisingly effective. (Smith & Waterman, 1981;
Altschul & Erickson, 1986; Zachariahet al., 2005).

The optimal, highest scoring alignment between two sequences
(x = x1, x2, · · · , xn andy = y1, y2, · · · , ym) is found by popu-
lating a series of score tables, also known as dynamic program-
ming matrices. The entries of the match table,M(i, j, r), are the
maximum alignment score for an alignment that terminates with
an ungapped segment of lengthr, ending at theith position ofx,
and thejth position ofy. Similarly, the gap tablesGx(i, j) and
Gy(i, j) contain the maximum alignment similarity given that the
alignment ends withxi or yj gapped. The entries of these tables
can be efficiently computed starting from the following boundary
conditions.

M(i, 0, l) = M(0, j, l) = −∞
Gx(i, 0) = Gx(0, j) = −∞
Gy(i, 0) = Gy(0, j) = −∞ (10)

A single aligned amino acid pair may signal the beginning of a
new local alignment, or it may occur immediately after any align-
ment gap.

M(i, j, 1) = max

 S(i, j)
S(i, j) + Gx(i− 1, j)
S(i, j) + Gy(i, j − 1)

(11)

In standard Smith-Waterman this is the only necessary match
score table. However, indoublet we require additional match

tables so that we may keep track of match scores over extended,
contiguously aligned regions. Of necessity, longer ungapped seg-
ments occur only after shorter segments. We restrict the maxi-
mum distanceL over which doublet correlations are scored, since
we expect that the useful information that can be extracted from
doublet correlations will decay rapidly with sequence separation
(See Fig. 3). Consequentially, we do not need to explicitly con-
sider ungapped segments of length greater thanL + 1.

M(i, j, 2 ≤ r ≤ L) = S(i, j) + D(i, j, r − 1) (12)

+ M(i− 1, j − 1, r − 1)

M(i, j, L + 1) = S(i, j) + D(i, j, L)

+ max
{

M(i− 1, j − 1, L)
M(i− 1, j − 1, L + 1)

Gaps in the alignment are either preceded by a match or they
extend an existing gap.

Gx(i, j) = max
r=1,L

{
M(i− 1, j − 1, r)− gopen

Gx(i− 1, j)− gext

Gy(i, j) = max
r=1,L

{
M(i− 1, j − 1, r)− gopen

Gy(i, j − 1)− gext
(13)

The largest score within the match table marks the last aligned
position of the optimal alignment. The full alignment can be
found by backtracking through the table, according to the choices
previously made during the scoring step.

We used the method of Bailey & Gribskov (2002) to fit an
extreme value distribution to the results of aligning a query se-
quence against a database of possible homologs. The maximum
likelihood parameters are then used to assign E-values to each
alignment.

2.3 Doublet BLOcks SUbstitution Matrix

A doublet substitution matrix (Eq. 6) contains204 = 160, 000
entries, of which202 × (202 + 1) = 80, 200 are unique due to
the underlying symmetry,dl(i, i′; j, j′) = dl(j, j′; i, i′). To accu-
rately estimate these scores we require a very large collection of
reliably aligned protein sequences. The BLOCKS database is one
such resource (Henikoff & Henikoff, 1992; Henikoffet al., 2000).
Each database block consists of a reasonably reliable, ungapped
multiple sequence alignment of a core protein region. BLOCKS
version 13+ contains 11,853 blocks, containing, on average, 56
segments of average length 26 residues. Overall, about109 pair-
wise amino acid comparisons are available for study.

The widely used canonical BLOcks SUbstitution Matrixes
(BLOSUM) where generated from version 5 of the BLOCKS
database (Henikoff & Henikoff, 1992). In order to generate a se-
ries of matrices representing different evolutionary divergences,
the sequences in each block are clustered at a given level of se-
quence identity and the inter-cluster sequence correlations are
collected. Thus BLOSUM100 (where only 100% identical se-
quences are clustered) represents a wide range, including low lev-
els, of evolutionary divergence, whereas BLOSUM30 represents
only correlations between very diverged sequences.
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     A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X 
 A   6 -1 -2 -2 -2 -1 -1  0 -2 -2 -2 -2  0 -2 -1  1  0 -3 -3  0 -2 -1 -1 
 R  -1  7  0 -1 -4  2  1 -3  0 -3 -3  3 -2 -3 -2 -1 -1 -2 -2 -3  0  1 -1 
 N  -2  0  8  2 -3  1  0  0  1 -3 -3  0 -2 -3 -1  1  0 -2 -2 -2  5  0 -1 
 D  -2 -1  2  9 -4  1  3 -1 -1 -4 -4  0 -3 -4 -1  0 -1 -3 -3 -3  6  2 -1 
 C  -2 -4 -3 -4 16 -4 -4 -4 -3 -3 -3 -4 -2 -2 -4 -2 -3 -3 -3 -2 -3 -4 -3 
 Q  -1  2  1  1 -4  6  3 -2  0 -3 -2  2 -1 -3 -1  0  0 -2 -2 -2  1  4  0 
 E  -1  1  0  3 -4  3  7 -3 -1 -3 -3  1 -2 -4  0 -1 -1 -3 -3 -3  2  5 -1 
 G   0 -3  0 -1 -4 -2 -3  9 -3 -5 -5 -2 -3 -4 -2  0 -2 -3 -4 -4 -1 -2 -2 
 H  -2  0  1 -1 -3  0 -1 -3 13 -4 -4  0 -3 -2 -2 -1 -2 -2  1 -3  0  0 -1 
 I  -2 -3 -3 -4 -3 -3 -3 -5 -4  6  3 -3  2  1 -3 -3 -1 -2 -2  4 -4 -3 -1 
 L  -2 -3 -3 -4 -3 -2 -3 -5 -4  3  6 -3  3  2 -3 -3 -2  0 -1  1 -4 -3 -1 
 K  -2  3  0  0 -4  2  1 -2  0 -3 -3  7 -2 -3 -1 -1 -1 -2 -2 -3  0  2 -1 
 M   0 -2 -2 -3 -2 -1 -2 -3 -3  2  3 -2  7  1 -3 -2 -1  0 -1  1 -3 -2 -1 
 F  -2 -3 -3 -4 -2 -3 -4 -4 -2  1  2 -3  1  9 -3 -3 -2  3  4  0 -3 -3 -1 
 P  -1 -2 -1 -1 -4 -1  0 -2 -2 -3 -3 -1 -3 -3 11  0 -1 -2 -3 -2 -1 -1 -1 
 S   1 -1  1  0 -2  0 -1  0 -1 -3 -3 -1 -2 -3  0  5  2 -2 -2 -2  0  0  0 
 T   0 -1  0 -1 -3  0 -1 -2 -2 -1 -2 -1 -1 -2 -1  2  6 -1 -2  0  0  0  0 
 W  -3 -2 -2 -3 -3 -2 -3 -3 -2 -2  0 -2  0  3 -2 -2 -1 16  4 -2 -3 -2 -1 
 Y  -3 -2 -2 -3 -3 -2 -3 -4  1 -2 -1 -2 -1  4 -3 -2 -2  4 11 -2 -2 -2 -1 
 V   0 -3 -2 -3 -2 -2 -3 -4 -3  4  1 -3  1  0 -2 -2  0 -2 -2  6 -3 -2 -1 
 B  -2  0  5  6 -3  1  2 -1  0 -4 -4  0 -3 -3 -1  0  0 -3 -2 -3  6  1 -1 
 Z  -1  1  0  2 -4  4  5 -2  0 -3 -3  2 -2 -3 -1  0  0 -2 -2 -2  1  5 -1 
 X  -1 -1 -1 -1 -3  0 -1 -2 -1 -1 -1 -1 -1 -1 -1  0  0 -1 -1 -1 -1 -1  0 

        1   2   3   4   5
   
AA AA   2   0   2   1   0  
AD AD   2   2   1   1   1
AD DA   4   3   3   3   2
DA DA   1   1   2   3   2
DD DD   0   3   3   3   2

CA AD   3   0   1   2   0  
CA AC   7   3   5   2   3 
CA AQ   3  -1   0   1  -1 

PI LF   1  -1   0  -1  -1
PI LP   5   4   3   2   0
PI LS   2   3   1   1   0

RA AA   0   1  -2  -2  -1
RA AR   2   1   2   2   2
RA AN   0  -1   0   1   1

PC CG  10   6   6  16   2
PC CL   8   4   4   8   3
PC CK  14   3   6  14  -5
PC CP  15   4   4  13   1

        1   2   3   4   5
   
CC CA  -3  -1  -9  -1   0   
CC CR   0   2  -4  -1   2   
CC CN  -1   0 -11  -3   1  
CC CD  -1  -1 -10  -3   0  
CC CC   2   0  -3  -1  -2  
CC CQ  -2   0  -4  -3   1   
CC CE   0   0  -7  -3   0   
CC CG  -3  -2  -9  -3  -1   
CC CH  -4  -1  -5  -2  -1   
CC CI  -1  -2 -13  -2  -2
CC CL  -3  -2 -10   1  -2  
CC CK  -1   3  -9  -1   3
CC CM  -2   0 -13   2  -1  
CC CF  -4  -2 -16   7  -2  
CC CP   0  -4 -12  -3  -1
CC CS  -2  -2 -10  -1   0   
CC CT  -1  -2 -10   1   1
CC CW  -4  -2 -11   2  -3
CC CY  -5   1  -2   6   0 
CC CV  -2  -4  -8  -2  -2 

        1   2   3   4   5
   
ET AA   0   0  -1  -1   0
ET AR   0  -1   1   1   1 
ET AN   1  -2   0   1   0   
ET AD   1   0   1   1   1  
ET AC   1   1   2   0   2   
ET AQ   1  -1   0   1   0  
ET AE   2   0   1   2   1   
ET AG   0   0  -1  -2  -1 
ET AH   0   0  -1   0   0 
ET AI   0  -1   0   0  -1  
ET AL   0   1  -1  -1   0 
ET AK  -1  -2   0   2   0 
ET AM   0  -1  -2  -1  -2 
ET AF   0   0   0  -1  -1   
ET AP   1   0   0   0   0
ET AS  -1  -1   0   0   1 
ET AT   0   1  -1  -1  -1 
ET AW  -1   0  -2  -1  -1 
ET AY  -1   0   0   1   1
ET AV   0  -1   0   1   0

BLOSUM65 (from BLOCKS 13+)

Singlet Substitutions Doublet Substitutions (Selected entries)
 L  L L

Figure 2: BLOSUM65 singlet substitution matrix derived from the BLOCKS 13+ database (left), and selected elements of the
corresponding doublet substitution matrices (right). Scores are in 1/4 bit units, rounded to the nearest integer. The average standard
statistical error is about 1/4 bits (i.e. about 1 unit) for the doublet scores, and essentially insignificant for the singlet scores, as judged
by bootstrap resampling (See Sec. 2.3) The singlet scores are the log odds of observing the given substitution; positive scores are
more likely, and negative score less likely to be observed than would be expected for uncorrelated sequences (Eq. 3). Similarly,
the doublet scores represent the log odds for observing pairs of substitutions, at various sequence separations, relative to the singlet
substitutions likelihood (Eq. 6). For example, theL=3 column forET AV(bottom right) indicates a score of zero for the alignment
of ExxT in one sequence toAxxV in the other.

In principle, we should match the divergence inherent in the
substitution matrix to the divergence of the pair of sequences we
wish to align (Altschul, 1993). However, this is computationally
expensive, and, in practice, a single matrix is chosen based on its
ability to align remote homologs, on the grounds that matching
close homologs is relatively easy (Brenner, 1996; Brenneret al.,
1998; Crooks & Brenner, 2005). In a recent evaluation of remote
pairwise homology detection efficacy (Green & Brenner, 2002;
Priceet al., 2005), we discovered that the BLOSUM65 substitu-
tion matrix, reparameterized from the BLOCKS 13+ database,
was more effective than any other reparameterized BLOSUM
(BLOCKS 13+), classic BLOSUM (BLOCKS 5) or PAM (Day-
hoff et al., 1978) substitution matrix, and was comparable to the
most effective VTML matrix (M̈uller et al., 2002). Consequen-
tially, we have used the BLOCKS 13+ database at 65% clustering
to build singlet and doublet BLOSUM substitution matrices. This
provides approximately107 - 108 independent aligned doublets,
depending on the sequence separationl.

The estimated doublet target frequenciesql(i, i′; j, j′) where
smoothed and regularized by adding a pseudocountα(i, i′; j, j′)
to the raw count data,n(i, j′; j, j′). The pseudocounts are taken
to be proportional to the marginal singlet target probabilities,
ql(i; j)ql(i′, j′).

ql(i, i′; j, j′) ≈ α(i, i′; j, j′) + n(i, i′; j, j′)
A + N

(14)

α(i, i′; j, j′) = A× q(i; j)q(i′; j′) (15)

Where,N is the total number of counts. Thus, if no data are
available (the total number of counts is zero,N = 0), then all
doublet scores would be zero, as can be seen from Eq. 6. Here,

A is a scale parameter that determines how much data is required
to overcome the prior probability inherent in the pseudocount.
Typically, such scale factors are picked empirically. However, in
this case, we performed a full Bayesian analysis, and determined
that for doublet substitutions reasonable values ofA are about2×
106, which can be compared to the107 to108 actual observations.
The full details are given in the appendix, and a representative
subset of a doublet substitution matrix is shown in fig. 2.

Standard statistical errors were estimated by non-parametric
Bayesian bootstrap resampling on sequence blocks (Efron, 1979;
Rubin, 1981; Efron & Tibshirani, 1993). Instead of assigning
equal weight to every sequence block, each block is instead given
a random weight drawn form a Dirichlet distribution. This ran-
dom reweighting induces random changes is the estimated scores,
thereby providing an estimate of the statistical errors caused by
the finite size and inhomogeneity of the training data.

2.4 Evaluation of remote homology detection

We have previously developed and applied a sensitive strategy
for evaluation of database search methods (Brenneret al., 1998;
Green & Brenner, 2002; Zachariahet al., 2005; Priceet al., 2005).
This strategy is made possible by the availability of a large col-
lection of protein sequences whose evolutionary interrelations are
known from structural information. A database search method
can then be evaluated by its ability to correctly identify pairs of
sequences that are known to be homologous, while avoiding pre-
dicting pairs that are not homologous. Because the homology in-
formation derives from sequence-independent data, this method
avoids the circularity inherent in other evaluation approaches.
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In our approach, each sequence is aligned against every other
sequence, and the alignment scores are used to determine pu-
tative homologs. We then consider the proportion of correctly
identified homologs as a function of erroneous matches. Stan-
dard statistical errors and confidence intervals are estimated with
Bayesian bootstrap resampling (Rubin, 1981; Priceet al., 2005).
This methodology has been used to contrast various alignment
algorithms (including BLAST, FASTA and Smith-Waterman) to
select appropriate gap parameters, to rigorously evaluate statis-
tical scores and to critically compare various substitution matrix
families.

The collection of related sequences is derived from the Struc-
tural Classification Of Proteins (SCOP) database (Murzinet al.,
1995; Andreevaet al., 2004). We use the ASTRAL compendium
(Brenneret al., 2000; Chandoniaet al., 2004) of representative
subsets of SCOP, filtered so that no two domains share more than
40% sequence identity. This filtering ameliorates the uneven sam-
pling within SCOP and makes the evaluation specific for remote
homologs. We partition every other SCOP fold into separate test
and training subsets of approximately equal size. For example,
each partition of SCOP release 1.61 (Sept. 2002) contains about
550 superfamilies, 2500 sequences, and 50,000 homologous se-
quence pairs. To avoid over-fitting, adjustable parameters are op-
timized using the training set. Results of an all-versus-all compar-
ison of the test set, using these optimized parameters, are reported
as a plot of coverage (fraction of true relations found) versus er-
rors per query (EPQ), the total number of false relations divided
by the number of sequences (See Fig. 4). The raw, unnormalized
coverage is the fraction of all true relations that are found.

Since the number of relations within a superfamily scales as the
square of the size of the superfamily, and because SCOP super-
families vary greatly in size, this reported coverage is dominated
by the ability to detect relations within the largest superfamilies.
To compensate for this unwarranted dependence, we also report
results re-weighted by the size of the superfamily. Re-weighting
can be performed to yield the average fraction of true relations
per sequence (linear normalization) or the average fraction of true
relations per superfamily (quadratic normalization). In general,
large superfamilies are more diverse, and the relationships within
them are harder to discover (Green & Brenner, 2002). Thus, un-
normalized coverage is typically less than the linearly normalized
coverage, which in turn is less than quadratically normalized cov-
erage. One important point of comparison for search results is
0.01 errors per query rate for linearly normalized results. This
data-point can be interpreted as the average fraction of true re-
lations per database query at a false positive rate of 1 in 100.
When comparing the results of two methods, we report the ob-
served difference in coverage at the selected EPQ, the bootstrap
standard deviation of the difference, and either a Z-static or con-
fidence interval that indicates the significance of the result (Price
et al., 2005).
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Figure 3: The inter-sequence mutual information of homologs
encoded in inter-site correlations at increasing separation, L. In
other words, the average doublet substitution scores (Eq. 7). The
top, dark line is the total information at various sequence sepa-
rations. For comparison, the information encoded in the corre-
sponding singlet substitutions (the average singlet matrix score)
is 0.31 bits per residue. The remaining lines illustrate the rela-
tive contributions of different substitutions classes to this total in-
formation; these are exact conservation XY↔XY, partial conser-
vation XY↔XZ, swaps XY↔YX, partial swaps XY↔ZX, and
unconserved, double substitutions XY↔ZU.

3 RESULTS

3.1 Doublet Substitution Correlations.

Various trends are evident within the doublet score matrix, as il-
lustrated in fig 2. Notably, exact conservations, such as AA↔AA,
AD↔AD and DD↔DD, etc., generally have positive scores. In
other words, conserved residues are more likely to be located
near other conserved residues than would be expected from un-
correlated substitutions. Also notable is that many (but far from
all) exact swaps, such as DA↔AD, are significantly more likely
that expected. Possibly, this is because the effect of a delete-
rious mutation X→Y can sometimes be ameliorated by the oc-
currence of the corresponding mutation Y→X, in the immediate
sequence neighborhood. Partial swaps, where only one of the
substitution pair is conserved, are also often positive. This might
reflect alignment errors in the original dataset. The most highly
positive scores (and therefore those events that are most over-
represented in the data relative to uncorrelated substitutions) are
associated with the substitutions PC↔Cx, i.e. a translocation of a
cystine, replacing a proline. The most relatively uncommon sub-
stitutions involve the mutation of one cystine in the cystine pair
CxxC (second column), a widespread and important motif found,
for example, in the thioredoxin family. However, these interesting
particular cases are atypical. Most of the doublet substitution ma-
trix is similar to the ET↔Ax substitutions displayed in the third
column; the majority of the scores are not significantly different
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from zero, indicating that most possible substitution doublets are
essentially uncorrelated.

We can place the above observations on a quantitative footing
by considering the inter-sequence mutual information (Eq. 7), a
measure of the correlation strength between aligned homologous
sequences. The first order contribution is equal to the average sin-
glet score, which is 0.31 bits per aligned residue for BLOSUM65
(BLOCKS13+). The corresponding average doublet score, the
additional information encoded in inter-site substitution covari-
ation, is around 0.04 bits at modest sequence separations (illus-
trated in fig. 3). Thus, the inter-site substitution correlations carry
relatively little information. However, these correlations appear
to persist to non-local neighbors, which suggests that the total
information from interactions at all sequence separations is sub-
stantial. However, figure 3 also displays the contributions to this
total information from various categories of substitution. The
largest contribution, and the only contribution to persist above
a sequence separation of 4 residues, represents exactly conserved
pairs of residues. This is a rather trivial correlation (it simply
indicates that conserved residues cluster), and its persistence sug-
gests that, in large part, these correlations may simple be an arti-
fact of the way in which the BLOCKS sequence alignments have
been generated. All other substitution classes, summing over
all sequence separations, contribution no more than 0.1 bits per
residue. This is not entirely insignificant, but it is still small com-
pared to the singlet mutual information. Thus non-trivial correla-
tions between substitutions are relatively weak.

3.2 Homology Detection

The primary use for pairwise alignment methods is to search
databases of previously characterized biological sequences for
homologs of the sequence of interest. Therefore, the most power-
ful methods will perform this task most effectively by assigning
true homologs significant statistical scores and assigning unre-
lated sequences low statistical scores. Our assessment methodol-
ogy compares database search methods on this criteria.

We compared thedoublet alignment algorithm against the
standard Smith-Waterman algorithm. To perform a fair test, we
converted raw scores to statistical scores for both algorithms us-
ing the same length normalized maximum likelihood EVD pa-
rameter determination method (Bailey & Gribskov, 2002). Op-
timal parameters for gapping, matrix scaling, and distance over
which to consider dipeptide correlations were found using the
training database described above. Then, the algorithms were
evaluated by comparing the relative ability to detect remote ho-
mologs within the test dataset, using the parameters optimized on
the training dataset. (Table 1).

The results of a database search for Smith-Waterman and
doublet , using only nearest neighboring dipetide covariations,
are shown in Fig. 4a. Both the Smith-Waterman anddoublet
methods performed remarkably similarly over all error rates and
normalization schemes. The linearly normalized coverage at 0.01
errors per query was slightly higher for Smith-Waterman than
doublet (Table 1). From this, we conclude that including
dipeptide covariation information does not improve remote ho-
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Figure 4: These coverage versus errors per query plots show that
including dipeptide covariation information in alignment deter-
mination (doublet ) does not improve remote homolog detec-
tion. (a) Optimized matrix, gap and look-back parameters were
used to search the test database with thedoublet and Smith-
Waterman algorithms. This database contains no sequence pairs
that share more than 40% sequence identity. The number of cor-
rectly identified homologs is shown as a function of the number
of errors made. Smith-Waterman outperformsdoublet over
all but extremely low error-rates. (b) Remote homolog test us-
ing only sequence pairs with less than 30% sequence identity.
As above, Smith-Waterman correctly identifies more remote ho-
mologs than thedoublet algorithm.
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L 0 1 2 3
Matrix scale 65 60 60 60
gopen 17 17 18 20
gext 2 2 2 1
Coverage(0.01 EPQ) 0.236 0.229 0.225 0.223

Table 1: Optimal matrix scale parameter, gap parameters, and
corresponding linearly normalized homology detection coverage
at 0.01 EPQ, as a function of the covariation distance considered,
L.

mology detection and, in fact, slightly degrades performance at
this error rate. We also performed the same coverage versus er-
rors per query analysis using only sequences with less than 30%
sequence identity (Fig. 4b), as it was previously reported that
dipeptide covariation information may be useful only for detect-
ing these extremely remote evolutionary relationships (Jung &
Lee, 2000). Our results, however, show that even at this evolu-
tionary distance, dipeptide covariation scoring does not improve
homology detection.

We used Bayesian bootstrap resampling to estimate statisti-
cal errors, and to determine if the observed coverage difference
was statistically significant (Rubin, 1981; Priceet al., 2005). We
found that a 95% confidence interval for the coverage difference
at 0.01 errors per query comfortable contained zero difference.
Therefore, we cannot distinguish between the remote homolog
detection abilities of Smith-Waterman anddoublet .

We also evaluated the effect of including covariation informa-
tion over larger sequence separations. As can be seen in table 1,
incorporating this additional information into alignment scores
actually results in a slow degradation of homology detection effi-
cacy.

4 DISCUSSION

We have developed, implemented, and tested an alignment al-
gorithm, doublet , that generates the optimal pairwise protein
sequence alignment under a scoring scheme that includes dipep-
tide covariation information. Perhaps surprisingly, and in marked
contrast to previous reports, we found that using this informa-
tion provides no benefit to remote homolog detection. The per-
formance of thedoublet algorithm for detecting remote ho-
mologs is statistically indistinguishable from the standard Smith-
Waterman algorithm.

The underlying explanation for this indifference of alignment
to dipeptide covariation is that substitution correlations are weak
on the average (Figs. 2 and 3). Therefore, the average effect of
these interactions is insignificant and including covariation in se-
quence alignment makes very little material difference to remote
homology detection.

We might reasonably question if the training data is at fault.
Indeed, the slight degradation of homology detection as more
distant correlations are included (Table 1) does indicate that the
doublet substitution matrices contain anomalies, perhaps due to
the training or alignment of the BLOCKS sequences, or per-

haps because of the different sampling of sequences included in
BLOCKS compared to those included in SCOP. The BLOCKS
database that we use to train the doublet substitution matri-
ces contains ungapped alignments, many of shorter length than
the average SCOP protein domain. Fikami-kobayashi and co-
workers showed that the covariation signal is strongest within
single secondary structure elements (Fukami-Kobayashiet al.,
2002). The poor performance ofdoublet , then, may be due
to its applying the covariation model too bluntly across entire
protein sequences when it is only applicable within secondary
structure elements. However, we note that the BLOCKS database
has been used to derive very effective singlet substitution matri-
ces (Green & Brenner, 2002; Priceet al., 2005), and therefore it
is implausible that the substitution signals within the BLOCKS
database are substantially erroneous. Rather, the observed degra-
dation simply reinforces the idea that neighboring substitutions
are weakly correlated, particularly when compared to single sub-
stitutions correlations, and therefore the doublet signal is readily
degraded by minor anomalies in the data.

Another line of evidence comes from exampling the inter-site
amino acid correlation of single protein sequences (Weisset al.,
2000; Crooks & Brenner, 2004; Crookset al., 2004). Neigh-
boring amino acids are almost entirely uncorrelated; the nearest
neighbor mutual information has been estimate as only 0.006 bits
(Crooks & Brenner, 2004). This lack of sequence correlation is
consistent with (but does not require) small inter-site substitution
correlations.

In should be emphasized, however, that the observation of
weak average dipeptide covariation does not negate the possibil-
ity of strong, interesting covariation in particular instances, such
as CP↔Cx, or within particular families. Moreover, it is conceiv-
able that covariation information could be used more judiciously,
thereby improving alignment results. For example, as previously
discussed, one might include doublet-type scoring information
only for residue pairs that are likely to be within the same sec-
ondary structural element. Similarly, one might examine the co-
variation of residues that are proximate in the tertiary structure,
rather than along the sequence (Rodionov & Johnson, 1994; Lin
et al., 2003; Kleinjunget al., 2004). However, residues that are
proximate in space are also weakly correlated(Clineet al., 2002;
Crookset al., 2004), and the inter-residue mutual information is
not improved by foreknowledge of the local structure environ-
ment (Crooks & Brenner, 2004; Crookset al., 2004). Therefore,
we suspect that such approaches will not have dramatic effects on
protein sequence alignment.

In conclusion, the ubiquitous assumption that neighboring sites
along a protein sequence evolve independently is generally ap-
propriate. This leads to fast, elegant and effective algorithms for
protein sequence alignment and homology detection.
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APPENDIX: Estimating probabilities
from counts with a prior of uncertain
reliability.

A common problem is that of estimating a discrete probability
distribution, θ = {θ1, θ2, . . . , θk}, given a limited number of
samples drawn from that distribution, summarized by the count
vectorn = {n1, n2, . . . , nk}, and a reasonablea priori best guess
for the distributionθ ≈ π = {π1, π2, . . . , πk}. (For a general in-
troduction, see Durbinet al.1998.) This guess may simple be the
uniform probability,πi = 1/k, which amounts to asserting that,
as far as we know, all possible observations are equally likely. At
other times, we may know some some more detailed approxima-
tion to the distributionθ.

For example, in the present case we wish to estimate the prob-
abilities of substituting a pair of amino acid residues by another
residue pair, given the number of times that this substitution
has been observed in the training dataset. This probability is
hard to estimate reliably since the distribution is very large with
204 = 160, 000 dimensions. Moreover, many of the possible
observations occur very rarely. However, substitutions at differ-
ent sites are not strongly correlated, and therefore we may ap-

proximate the doublet substitution probabilities by a product of
single substitution probabilities. Since the dimensions of these
marginals are relatively small we can accurately estimate them
from the available data, and thereby construct a reliable and rea-
sonable initial guess for the full doublet substitution distribution
(Eq. 15).

In the common and conventional pseudocount approach, we
assume that the distributionπ was estimated fromA previous ob-
servations. These pseudocounts,αi = πiA, are then proportion-
ally averaged with the real observations (N =

∑
i ni) to provide

an estimate ofθ;

θi =
αi + ni

A + N
. (16)

This prescription is intuitively appealing. When the total num-
ber of real counts is much less than the number of pseudocounts
(N � A) the prior dominates, and the estimated distribution is
determined by our initial guess,θ ≈ π. In the alternative limit
that the real observations greatly outnumber the pseudocounts
(N � A) the estimated distribution is given by the frequencies
θi = ni/N . However, it is not immediately obvious how to se-
lect A, although many heuristics have been proposed, including
A = 1, A = k (Laplace), andA =

√
N (e.g. Lawrenceet al.,

1993; Durbinet al., 1998; Nemenmanet al., 2001). Essentially,
this total pseudocount parameter represents our confidence that
the initial guessθ ≈ π is accurate, since the larger the total pseu-
docount the more data is required to overcome this assumption.

Within a Bayesian approach we can avoid this indeterminacy
by admitting that,a priori, we do not know how confidant we are
thatπ approximatesθ. The probabilityP (n|θ) of independently
sampling a particular set of observations,n, given the underlying
sampling probability,θ, follows the multinomial distribution, the
multivariate generalization of the binomial distribution;

M(n|θ) =
1

M(n)

k∏
i=1

θni
i , M(n) =

∏
i ni!

(
∑

i ni)!
. (17)

The prior probability of the sampling distributionP (θ) is typ-
ically modeled with a Dirichlet distribution,

D(θ|α) =
1

Z(α)

k∏
i=1

θ
(αi−1)
i , Z(α) =

∏
i Γ(αi)
Γ(A)

. (18)

where
∑

i θ = 1, αi > 0 andA =
∑

i αi. Note that the mean of
a Dirichlet is

E[θi] =
αi

A
. (19)

Therefore, we may fix the parameters of the Dirichlet prior by
equating our initial guess,π, with the mean prior distribution:
π = α/A. If we can fix the scale factorA, then we can combine
the prior and observations using Bayes’ theorem.

P (θ|n) =
P (n|θ)P (θ)

P (n)
. (20)

Because the multinomial and Dirichlet distributions are natu-
rally conjugate, the posterior distributionP (θ|n) is also Dirichlet.

P (θ|n) ∝ M(n|θ)D(θ|α)
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∝
k∏

i=1

θ
(ni+αi−1)
i ,

= D(θ|α + n) (21)

The last line follows because the product in the previous line is an
unnormalized Dirichlet with parameters(n + αk), yet the proba-
bility P (θ|n) must be correctly normalized.

Given multinomial sampling and a Dirichlet prior, the prob-
ability of the data is given by the under-appreciated multivari-
ant negative hypergeometric distribution (Johnson & Kotz, 1969;
Durbinet al., 1998, Eq. 11.23);

P (n) =
∫

dθ P (n|θ)P (θ),

=
∫

dθ M(n|θ)D(θ|α),

=
1

Z(α)
1

M(n)

∫
dθ

20∏
i=1

θ
(ni+αi−1)
i ,

=
Z(n + α)
Z(α)M(n)

≡ H′(n|n + α). (22)

Again, the last line follows because the product in the previ-
ous line is an unnormalized Dirichlet with parameters(n + αk).
Therefore, the integral overθ must be equal to the corresponding
Dirichlet normalization constant,Z(n + αk). Note that, con-
fusingly, the negative hypergeometric distribution is sometimes
called the inverse hypergeometric, an entirely different distribu-
tion, and vice versa.

Since we do know a reasonable value for the scale factorA
we cannot use a simple Dirichlet prior. As an alternative, we
explicitly acknowledge our uncertainly aboutA by building this
indeterminacy into the prior itself. Rather than a single Dirichlet,
we use the Dirichlet mixture;

P (θ|π) =
∫ ∞

0

dA D(θ|πA)P (A). (23)

The distributionP (A) is a hyperprior, a prior distribution placed
upon a parameter of the Dirichlet prior. Following the same math-
ematics as Eqs. 20-22, we find that the posterior distribution is the
Dirichlet mixture

P (θ|n) =
∫ ∞

0

dA D(θ|α + n)P (A|n) , (24)

where

P (A|n) =
P (A)H′(n|α + n)∫∞

0
dA P (A)H′(n|α + n)

. (25)

In principle, we have to select and parameterize a functional
form for the hyperprior,P (A). For example, an exponential dis-
tribution,P (A) = λ exp(−λA), with mean1/λ, might be appro-
priate. Fortunately, we can often avoid selecting an explicit hy-
perprior. In practice, given sufficient data, the probability of that
dataP (n|A) is a smooth, sharply peaked function ofA. This is il-
lustrated in figure 5 using107 observations of the 160,000 dimen-
sional doublet substitution probability, where the mean prior dis-
tribution is taken to be the product of singlet substitutions prob-
abilities (Eq. 15). If the prior distribution ofA is reasonable,

and neither very large nor very small over the range of interest,
then the posterior distributionP (A|n) will also be very strongly
peaked. Moreover, the location of that peak will be almost totally
independent of the prior placed onA. In this limit the posterior
Dirichlet mixture (Eq. 24) reduces to the single component that
maximizes the probability of the data;

P (θ|n) ≈ D(θ|πA + n),
A = argmaxAP (A|n) ≈ argmaxAP (n|A),

P (n|A) = H′(n|n + πA). (26)

Here,argmaxxf(x) is the value ofx that maximizes that function
f(x).

Given any function ofθ, the average of the function across
the posterior distribution (the posterior mean estimate (PME) or
Bayes’ Estimate) minimizes the mean squared error of that es-
timate. In particular, the posterior mean estimate ofθ (Eq. 19)
is

θPME
i =

Aπi + ni

A + N
. (27)

Taken altogether, our practice is to take the raw doublet sub-
stitution counts and construct a mean prior distributionπ based
upon the approximation that substitutions on neighboring sites
are uncorrelated (Eq. 15). We then find the scaling factorA
that maximizes the negative hypergeometric probabilityH′(n|n+
πA). For our data the total number of observationsN is around
107, for which the optimal scale factorA was found to be about
106 (Fig. 5). The posterior mean estimate of the doublet substi-
tution distribution (Eq. 14) is then used to construct the doublet
substitution matrix (Eq. 6). Code for constructing doublet sub-
stitution matrices using this procedure and for finding the opti-
mal prior and posterior, given any set of observations andπ, a
best guess for the true distributionθ, is available from our web
site (http://compbio.berkeley.edu ), along with other
code and data for this work. Our programs make extensive use of
the Open Sourced GNU Scientific Library (GSL) (Gough, 2003;
Matsumoto & Nishimura, 1998).
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